17. Face Selectivity of the Diels-AIder Additions of 2-Substituted 5,6-bis((E)-chloromethylidene)bicyclo[2.2.2|octanes $\left.{ }^{1}\right)^{2}$)

by Marco Avenati and Pierre Vogel ${ }^{3}$)
Institut de chimie organique de l'Université, 2, rue de la Barre, CH-1005 Lausanne

(23. X. 81)

Summary

The preparation of 5,6-bis((E)-chloromethylidene)bicyclo[2.2.2]oct-2-ene (13), 2,3-bis((E)-chloromethylidene)-5exo,6exo- and -5endo,6endo-epoxybicyclo[2.2.2] octane ($\mathbf{1 4}$ and 15), 5,6-bis((E)-chloromethylidene)-2exo- and -2endo-bicyclo[2.2.2] octanol (16 and 17) and 5,6-bis((E)-chloromethylidene)-2-bicyclo[2.2.2]octanone (18) are described. The face selectivity (endo-face vs. exo-face attack onto the exocyclic diene) of their cycloadditions to tetracyanoethylene has been determined in benzene at 20°. It is $78 / 22,80 / 20,60 / 40,68 / 32,3 / 97$ and $30 / 70$ for $\mathbf{1 3}, \mathbf{1 4 , 1 5 , 1 6 , 1 7}$ and 18 , respectively.

Introduction. - The exo-face stereoselectivity of the 2 -norbornene ${ }^{4}$) in its reactions with a large variety of reagents has been attributed to steric factors [3] (the exoface of the π-system being less crowded than the endo-face), to torsional effects [4] (eclipsing of the bridgehead H -atoms or substituents with those at the olefinic C -atoms when the attack occurs onto the endo-face) and to electronic factors, e.g. nonequivalent π-orbital extension toward the exo-face [5]. The latter hypothesis has been substantiated by single crystal structures of norbornene [6] [7] and oxanorbornene derivatives [7] [8]. The face stereoselectivity of the Diels-Alder cycloadditions to cyclopentadiene annelated to norbornene has been studied first by Alder et al. [9]. They reported that maleic anhydride adds to cyclopenta[$b]$ norbornene ($=4,7$-meth-ano-4,5,6,7-tetrahydro- 2 H -indene; isodicyclopentadiene; 1) with exo-face selectivity, following the Alder-endo-rule and giving the adduct 3 preferentially. Twenty years later, Sugimoto et al. found the [4+2]-cycloadditions of methyl acrylate and propynoate to 1 to be endo-face selective [10]. Recently, Paquette et al. confirmed Sugimoto's conclusions and reported that the endo-face stereoselectivity was generally preferred for the Diels-Alder additions of the cyclopentadiene derivatives 1

[^0]
1

2

3

and 2 to a large variety of dienophiles including benzyne and maleic anhydride [11], in contradiction with Alder's report [9]. However, Bartlett et al. pointed out, that the endo- vs. exo-face selectivity in the reaction of 1 with maleic anhydride varied between 55:45 and 35:65 (giving 3 and 4) depending upon the solvent and the temperature [6]. The photooxidations of $\mathbf{1}$ and $\mathbf{2}$ proceeded only with moderate endo-face selectivity [12]. Paquette et al. attributed the endo-face selectivity of the Diels-Alder additions of $\mathbf{1}$ and $\mathbf{2}$ to a kinetic stereoelectronic control (secondary orbital interactions between the dienophiles and the dienes).

We reported that cycloadditions of maleic anhydride and dimethyl acetylenedicarboxylate to (2-norborneno)[c]furan (5) were highly endo-face selective under kinetic and thermodynamic control. The syn-11-oxasesquinorbornene 6 appeared to be more stable than its anti-isomer 7^{5}). This was attributed to a 'synergic' effect of the polarization of the double bond π-electron density on the exo-face of the norbornene and oxanorbornene sub-systems joined together by the same $\mathrm{C}(2), \mathrm{C}(7)$ double bond [7]. Thus, the kinetic endo-face Diels-Alder selectivity of 5 was parallel to the thermodynamic stereoselectivity, in agreement with the Bell-Evans-Polanyi principle [13]. This might also be the case with the cyclopentadiene derivatives $\mathbf{1}$ and $\mathbf{2}$. The first case of $[4+2]$-additions of dienes grafted onto a bicyclic skeleton where the face stereoselectivity was proven not to be controlled by the stability of the adducts was the tetracyanoethylene (ethylenetetracarbonitrile; TCE) cycloadditions to 2-((Z)-chloromethylidene)- and 2-((E)-chloromethylidene)-3-methylidene-5exo, 6 exo-bis(chloromethyl)-7-oxanorbornanes (8 and 9) where the exo-face was preferred [2][14].

8

9

10

11

12

[^1]The cycloadditions of the cyclopentadiene $\mathbf{1 0}$ annelated to bicyclo[2.2.2]octa-2,5-diene were found to prefer the exo-face with benzyne, methyl propynoate and acetylenedicarboxylate [11]. However, the Diels-Alder addition of $\mathbf{1 0}$ to N -methyltriazolinedione (NMTAD) was highly endo-face selective [15]. Feast et al. found the perfluorinated derivative 11 to add to 2-butyne and propyne preferentially onto the endo-face [16], whereas the exo-face was preferred for the additions of the triene 12 to 2-butyne and dimethyl acetylenedicarboxylate [17].

All these results demonstrate that the face selectivity of the Diels-Alder additions of dienes grafted onto bicyclic skeletons is governed by subtile and numerous differential factors reigning on the two faces of the diene ${ }^{6}$). To gain more detailed informations on these factors we prepared the 5,6-bis $((E)$-chloromethylidene)bicy-clo[2.2.2]oct-2-ene (13) and the 2-substituted 5,6-bis $((E)$-chloromethylidene)bicyclo[2.2.2]octanes 14-18. The exo-face ($=$ side of the ethano bridge $\mathrm{H}_{2} \mathrm{C}(7), \mathrm{H}_{2} \mathrm{C}(8)$) and the endo-face ($=$ side opposite to $\mathrm{H}_{2} \mathrm{C}(7), \mathrm{H}_{2} \mathrm{C}(8)$) of these new exocyclic ${ }^{7}$) s-cisbutadienes are differentiated by minor structural features. To a first approximation, the $C(2), C(3)$ and $C(7), C(8)$ bridges of $\mathbf{1 4}$ and $\mathbf{1 6}$ should have similar bulk on the endo- and exo-faces, respectively ${ }^{8}$). This is not true for $13,15,17$ and 18. The nonbonding electrons of the polar functions in $\mathbf{1 5 , 1 7}$ and $\mathbf{1 8}$ may intervene and influence the face selectivity of the cycloadditions of these dienes.

13

15

16

17

18

Results. - The preparation of the dichlorodienes 13-18 starts with the DielsAlder addition of 1,3-cyclohexadiene to a mixture of malealdehyde and fumaraldehyde [20] yielding the trans-bicyclo[2.2.2]oct-5-ene-2,3-dicarbaldehyde 19; 85\%. Chlorination with PCl_{5} in CHCl_{3} [21] furnished the tetrachloride $20(60 \%)$. Heating 20 in $\mathrm{KOH} / \mathrm{EtOH}$ gave the triene 13 (91%). Epoxidation of 20 with m-chloroperbenzoic acid in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ yielded a mixture of the exo- and endo-epoxy derivatives 21 (90%) which eliminated two mol-equiv. of HCl upon heating in $\mathrm{KOH} / \mathrm{EtOH}$ giving the epoxydienes $\mathbf{1 4}$ and 15 in a $9: 1$ product ratio (95%). The two isomers could be separated readily by column chromatography on silica gel. Nucleophilic additions to the epoxydienes 14 and 15 appeared to be slow reactions under our conditions. Hydroboration followed by oxidative workup gave a mixture of the exo- and endoalcohols 22 (70\%) that yielded the dienols 16 and 17 (95:5, 95\% yield) upon treatment in $\mathrm{KOH} / \mathrm{EtOH}$. They were also separated by column chromatography on silica gel. Collin's oxidation $\left(\mathrm{CrO}_{3}\right.$, pyridin, $\left.\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$ of 16 gave the dienone $18(60 \%)$. Reduction of 18 with LiAlH_{4} in THF furnished a $1: 1$ mixture of 16 and 17.

[^2]The exo-preference for the epoxidation and hydroboration of $\mathbf{2 0}$ was expected as being due to the bulk of the endo-dichloromethyl substituent. The exo-and endoconfigurations of the epoxy group in 14 and in 15 , respectively, and of the hydroxy substituent in 16 and in 17 , respectively, was confirmed by lanthanide-induced shifts in the ${ }^{1} \mathrm{H}-\mathrm{NMR}$. $\left(\mathrm{Eu}(\mathrm{dpm})_{3}\right)$ and ${ }^{13} \mathrm{C}-\mathrm{NMR} .\left(\mathrm{Yb}(\mathrm{dpm})_{3}\right)$ spectra. The (E)-configuration of the two chloromethylidene moieties of 13-18 was expected from their mode of formation. It was confirmed by ${ }^{13} \mathrm{C}-\mathrm{NMR}$., and more specifically, by the analysis of the ${ }^{3} J_{(\mathrm{C}, \mathrm{H})}$ coupling-constants of $\mathrm{C}(5)$ and $\mathrm{C}(6)$ with the methylidene H atoms (absence of relatively large trans ${ }^{3} J_{(\mathrm{C}, \mathrm{H})}[22]$ and comparison with the ${ }^{13} \mathrm{C}$ NMR. spectra of the (Z)- and (E)-chlorodienes 8 and 9 [2][14]. With 16-18, a nuclear Overhauser effect (NOE) [23] was measured on $\mathrm{HCCl}=\mathrm{C}(6)$ while irradiating $\mathrm{HCCl}=\mathrm{C}(5)$, or vice-versa. Irradiation of the bridgehead H -atoms $\mathrm{H}-\mathrm{C}(1)$ and H $\mathrm{C}(4)$ did not give a NOE on $\mathrm{HCCl}=\mathrm{C}(5)$ and $\mathrm{HCCl}=\mathrm{C}(6)$ for 13-188).

19
HO

20

21

22

A typical bathochromic shift of $10-15 \mathrm{~nm}$ [24] was observed in the UV. spectra of 13-18 when compared with those of the corresponding 5,6 -dimethylidenebicyclo[2.2.2]octane derivatives [1].

The cycloadditions of TCE to $13-18$ in benzene (20°) gave the mixtures of adducts endo-23/exo-23 - endo-28/exo-28, respectively, in excellent yield ($>95 \%$). The product ratios were determined by ${ }^{1} \mathrm{H}-\mathrm{NMR}$. (360 MHz) of the reaction mixtures. They gave the face selectivities ($\pm 1 \%$) reported below.

The major adducts endo-23-endo-26, exo-27 and exo-28 could be purified by fractional crystallization in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ /pentane. The configuration of the Cl -atoms in 23-28 was given by NOE in their ${ }^{1} \mathrm{H}-\mathrm{NMR}$. spectra.

For 23-25, 1:1 mixtures of the endo/exo-adducts were analyzed by FT- ${ }^{1} \mathrm{H}-\mathrm{NMR}$. (360 MHz). A NOE was observed for $\mathrm{H}-\mathrm{C}(3)$ and $\mathrm{H}-\mathrm{C}(6)$ of endo- $\mathbf{2 3}$ - endo- $\mathbf{2 6}$ while irradiating the $\mathrm{H}-\mathrm{atoms}$ at $\mathrm{C}(11)$ and $\mathrm{C}(12)$ (see Fig. 1 and 2). With endo-26, irradiation of $\mathrm{H}_{2} \mathrm{C}(10)$ or $\mathrm{H}-\mathrm{C}(9)$ gave no NOE on $\mathrm{H}-\mathrm{C}(3)$ and $\mathrm{H}-\mathrm{C}(6)$ (Fig. 3). With exo-27, irradiation of $\mathrm{H}_{2} \mathrm{C}(11)$ and $\mathrm{H}_{2} \mathrm{C}(12)$ gave no NOE on $\mathrm{H}-\mathrm{C}(3)$ and $\mathrm{H}-\mathrm{C}(6)$, whereas irradiation of $\mathrm{H}_{e n d}-\mathrm{C}(10)$ produced a NOE. Similar observations were made for the pure adduct exo-28. In the case of endo-28 (2:1 mixture endo-28/exo-28), a NOE on $\mathrm{H}-\mathrm{C}(3)$ and $\mathrm{H}-\mathrm{C}(6)$ was measured while irradiating $\mathrm{H}_{2} \mathrm{C}(11)$ and $\mathrm{H}_{2} \mathrm{C}(12)$.

Figure 1. $\mathrm{FT} .{ }^{-1} \mathrm{H}-\mathrm{NMR} .\left(360 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{COCD}_{3}\right)$ spectrum of a ca. $1: 1$ mixture of endo-23/exo-23. (A) During irradiation of $\mathrm{H}_{2} \mathrm{C}(11)$ and $\mathrm{H}_{2} \mathrm{C}(12)$ at 1.7 ppm ; (B) spectrum A substracted by the non-irradiated spectrum. The asterisk refers to the signal of $\mathrm{H}-\mathrm{C}(3)$ and $\mathrm{H}-\mathrm{C}(6)$ of endo- $\mathbf{2 3}$ (the major adduct from 13 and TCE) that shows a NOE.

Figure 2. FT.- ${ }^{-} \mathrm{H}-\mathrm{NMR} .\left(360 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{COCD}_{3}\right)$ spectrum of a ca. 1.1 mixture of endo-24/exo-24. (A) During irradiation of $\mathrm{H}_{2} \mathrm{C}(11)$ and $\mathrm{H}_{2} \mathrm{C}(12)$; (B) spectrum A substracted by the non-irradiated spectrum. The asterisk refers to the signal of $\mathrm{H}-\mathrm{C}(3)$ and $\mathrm{H}-\mathrm{C}(6)$ of endo- 24 that shows a NOE.

Figure 3. $\mathrm{FT}_{-}{ }^{l} \mathrm{H}-\mathrm{NM}$. $\left(360 \mathrm{MHz}, C \mathrm{C}_{3} \mathrm{COCD}_{3}\right)$ spectrum of pure endo-26. (A) During irradiation of $\mathrm{H}-\mathrm{C}(11)$ and $\mathrm{H}-\mathrm{C}(12)$ opposite to the $\mathrm{C}(9), \mathrm{C}(10)$ branch; (B) spectrum A substracted by the non-irradiated spectrum showing NOE at the signal of $\mathrm{H}-\mathrm{C}(3)$ and $\mathrm{H}-\mathrm{C}(6)$ at 6.1 ppm and at that of near protons; (C) during irradiation of $\mathrm{Hendo}-\mathrm{C}(10)$ at 2.35 ppm ; (D) spectrum C substracted by the non-irradiated spectrum showing no NOE at 6.1 ppm .
Confirmation of the ${ }^{1} \mathrm{H}$-NMR. assignments was given by Collin's oxidation of the pure exo-hydroxy adduct endo- 26 yielding exclusively endo-28.

The symmetry observed in the ${ }^{1} \mathrm{H}$ - and ${ }^{13} \mathrm{C}$-NMR. spectra of the adducts 23-25
confirmed the stereospecificity of the $\left[{ }_{\pi} 4_{s}+{ }_{\pi} 2_{s}\right]$-cycloadditions of TCE to $13-15$. Two signals were observed for $\mathrm{H}-\mathrm{C}(3)$ and $\mathrm{H}-\mathrm{C}(6)$ of 26-28. A long-range ${ }^{5} J_{(\mathrm{H}, \mathrm{H})}$ coupling-constant of 1.5 Hz (see Fig. 3) typical of a pseudoaxial/pseudoequatorial H, H-arrangement in cyclohexene derivatives [25] was observed in endo-26, exo-27 and exo-28, thus confirming the stereospecificity of the Diels-Alder additions of TCE to 16-18.

Discussion. - Contrary to what is known for the Diels-Alder adducts of the furan derivative 5 [7], we do no expect a significant difference in stability between the en-do- and exo-adducts of TCE to 13-18. The endo-face selectivity of the TCE addition to $\mathbf{1 3}$ contrasts with the exo-face selectivity reported for the additions of methyl propynoate and acetylenedicarboxylate to the cyclopentadiene analog $\mathbf{1 0}$ [11]. However, it parallels the endo-preference observed for the NMTAD addition to $\mathbf{1 0}$ [15]. It is possible that the endo-face selectivity of the cycloadditions of 10 [15], 11 [16] and 13 could be due to differential steric effects between the endo- and exo-faces. This steric argument is obviously not valid for the additions of $\mathbf{1 2}$ [17], other factors must be considered [11] [12][15]. We postulate that the polarizability of the bridges can intervene in stabilizing the transition states of the Diels-Alder additions of 13-18 and other exocyclic dienes grafted onto bicyclic skeletons. We expect the unsaturated bridge in $\mathbf{1 3}$ (and $\mathbf{2}$ and 10-12) and the substituted bridges in 14-18 to be more polarizable than the ethano $\mathrm{C}(7), \mathrm{C}(8)$ bridge, thus favoring the dienophile to attack onto the endo-face. This effect will be the largest for cycloadditions involving dienophiles with the largest electronic demand. Accordingly, strong dienophiles such as TCE and NMTAD will prefer to attack onto the endo-face of $\mathbf{1 0 - 1 8}$. In the case of the 7 -oxanorbornanes $\mathbf{8}$ and 9 , the exo-face is preferred, perhaps because of smaller hindrance on the exo-face or because of the oxygen bridge ($\mathrm{n}(0)$ electrons) that can participate in the stabilization of the Diels-Alder transition state. This effect could also be present in the TCE addition to $\mathbf{1 5}$, the endo-epoxy group stabilizing the endoattack in competition with a possible steric repulsive interaction. The relatively high exo-face selectivity observed with the endo-dienol 17 could be explained by invoking a larger steric destabilization of the endo-attack than in the case of the endoepoxy derivative $\mathbf{1 5}$.

Competitive attractive polarizability effects and steric repulsive effects of the unsaturated or substituted $C(2), C(3)$ bridge cannot explain the exo-face selectivity of the TCE addition to $\mathbf{1 8}$. One is now tempted to invoke a third factor, for instance a repulsive dipole-dipole interaction between the carbonyl function of $\mathbf{1 8}$ and the cyano groups of TCE. It is also possible (although it could not be put on firm grounds experimentally by analysis of the UV./VIS. spectra recorded during the addition of TCE to 13-18) that charge-transfer complexes implying coordination of the oxygenated functions by the dienophile (or H-bridging) could hinder the TCE attack onto the endo-face. If such an hypothesis should be valid for the TCE addition to 17 and 18 we must invoke that the epoxy group of 15 and the etheral bridges of 8 and 9 give weaker complexes with TCE than the OH substituent in 17 (H-bonding ?).

The face selectivity of the cycloadditions of other dienophiles than TCE should be analyzed to substantiate the above hypotheses. Preliminary results with maleic anhydride showed that the dichlorobutadienes 13-18 are not suited for such a study because their adducts loose HCl too easily, giving aromatized products that have
lost the stereochemical information of the cycloadditions. We have found that the Cl -atoms in $\mathbf{1 3}$ can be replaced stereoselectively by D-atoms. The cycloadditions of 5,6-bis(deuteriomethylidene)bicyclo[2.2.2]oct-2-ene and its derivatives are now under study and will be reported elsewhere. For the moment, we must admit our inability to give a simple, general and predictive rationale for the face selectivity of the Diels-Alder additions to dienes grafted onto bicyclic skeletons. Predictions based on the analysis of the shapes and energies of the MO's of the dienes $\mathbf{1 , 2 , 5}$ and $\mathbf{1 0 - 1 8}$ and various dienophiles were rather confusing in our hands because the calculated subHOMO's were numerous and their shapes were not independent upon the calculation techniques, and furthermore, the usual PMO approaches [11] became difficult to apply with non-symmetrical dienes such as 16-18.

We thank Hoffmann-La Roche and Co. AG, Basel, the Fonds national suisse pour la recherche scientifique and the Fonds Herbette, Lausanne, for generous financial support. We wish to thank also Miss F. Berchier, Mr. C. Mahaim, Dr. P.-A. Carmipt and Mr. M. Rey for technical assistance. We are grateful to Prof. L. A. Paquette for fruitful discussions and disclosure of unpublished results.

Experimental Part

General remarks. See [26]. Synthesis of fumaraldehyde/malealdehyde. At 40-45 , 2,5-dimethoxy-2,5dihydrofuran ($65 \mathrm{~g}, 0,5 \mathrm{~mol}$) was stirred for 12 h in $\mathrm{CH}_{3} \mathrm{COOH} / \mathrm{H}_{2} \mathrm{O} 2: 5(200 \mathrm{ml})$. After removal of $\mathrm{CH}_{3} \mathrm{COOH}$ and $\mathrm{H}_{2} \mathrm{O}$ i.V., the residue was distilled (12 Torr) yielding $31 \mathrm{~g}(72 \%)$ of slightly yellow liquid that was used immediately, b.p. $52-60 \% 12$ Torr.

Synthesis of trans-bicyclo[2.2.2/oct-5-ene-2,3-dicarbaldehyde (19). Cyclohexa-1,3-diene ($20 \mathrm{~g}, 0.25$ mol) and fumaraldehyde/malealdehyde (see above; $20 \mathrm{~g}, 0.25 \mathrm{~mol}$) were heated under reflux in anb. benzene (80 ml) for 20 h . The mixture was distilled i.V. yielding $35 \mathrm{~g}(85 \%)$ of $\mathbf{1 9}$, b.p. $132-133^{\circ}$, colorless liquid. - ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right): 9.7(s, 1 \mathrm{H}) ; 9.5(s, 1 \mathrm{H}) ; 6.6-6.0(\mathrm{~m}, 2 \mathrm{H}) ; 3.4-2.9(\mathrm{~m}, 4 \mathrm{H}) ; 2.0-1.0(\mathrm{~m}, 4 \mathrm{H})$.

Synthesis of trans-5,6-bis(dichloromethyl)bicyclo[2.2.2]oct-2-ene (20). The dialdehyde 19 (27,3 g, 0,17 $\mathrm{mol})$ in $\mathrm{CHCl}_{3}(90 \mathrm{ml})$ was added dropwise to a stirred suspension of $\mathrm{PCl}_{5}(38,5 \mathrm{~g}, 0,185 \mathrm{~mol})$ in CHCl_{3} $(170 \mathrm{ml})$. The mixture was stirred at RT . for 20 h . After evaporation of the solvent $\mathrm{i} . \mathrm{V}$., the residue was dissolved in $\mathrm{Et}_{2} \mathrm{O}(150 \mathrm{ml})$ and poured into ice/water (300 g). The mixture was immediately neutralized with sat. $\mathrm{Na}_{2} \mathrm{CO}_{3}$ solution. The aq. phase was extracted with ether (3 times 50 ml). The etheral extracts were combined and dried $\left(\mathrm{MgSO}_{4}\right)$. After evaporation of the solvent i.V., the residue was purified on a short column of silica gel (350 g , hexane $/ \mathrm{CHCl}_{3} 1: 1$) yielding $28 \mathrm{~g}(60 \%)$ of colorless oil. - IR. (film): $3060,2970,2880,1470,1450,1375,1290,1230,1170,930,920,895,885,870,835,750,710 .-{ }^{1} \mathrm{H}-\mathrm{NMR}$. $\left(\mathrm{CDCl}_{3}\right): 6.4(m, 2 \mathrm{H}) ; 6.0-5.7(d \times d, 2 \mathrm{H}) ; 3.1(\mathrm{~m}, 2 \mathrm{H}) ; 2.2-1.0(m, 6 \mathrm{H})-\mathrm{MS} .(70 \mathrm{eV}): 278(1.2), 276$ (5), 275 (10), 272 (8), 241 (3), $239(8), 237$ (8), 203 (11), 201 (18), 191 (15), 189 (23), 167 (7), 165 (17), 161 (10), $155(8), 153(24), 129(30), 127(45), 125(100), 117(35), 115(45), 103(20), 102(12), 101(12), 99(13)$. 91 (53), 89 (22), 87 (25), 85 (40), 83 (38).

$$
\mathrm{C}_{10} \mathrm{H}_{12} \mathrm{Cl}_{4}(274.01) \quad \text { Calc. } \mathrm{C} 43.83 \quad \mathrm{H} 4.41 \% \quad \text { Found } \mathrm{C} 43.63 \text { H } 4.51 \%
$$

Synthesis of 2endo, 3exo-bis(dichloromethyl)-5exo, 6exo- and -5endo, 6endo-epoxybicyclo[2.2.2]octanes (21). The tetrachloride $20(5 \mathrm{~g}, 18 \mathrm{mmol})$ in anh. $\mathrm{CH}_{2} \mathrm{Cl}_{2}(20 \mathrm{ml})$ was added to a solution of m chloroperbenzoic acid ($10.2 \mathrm{~g}, 57 \mathrm{mmol}$) in anh. $\mathrm{CH}_{2} \mathrm{Cl}_{2}(120 \mathrm{ml})$. After heating under reflux for 3 days, the mixture was washed with aq. $10 \% \mathrm{~K}_{2} \mathrm{CO}_{3}$-solution (3 times 50 ml), then with water. After drying $\left(\mathrm{MgSO}_{4}\right)$ the solvent was evaporated i.V. yielding $4.7 \mathrm{~g}(90 \%)$ of viscous oil. - IR. (film): 3020, 2960, $2920,2880,1795,1770,1730,1470,1450,1410,1360,1340,1300,1290,1260,1245,1230,1215,1170,1010$, $960,940,920,910,870,845,800,780,740 .-{ }^{1} \mathrm{H}-\mathrm{NMR} .\left(\mathrm{CDCl}_{3}\right): 6.25-5.75(\mathrm{~m}, 2 \mathrm{H}) ; 3.65-3.25(\mathrm{~m}, 2 \mathrm{H})$; $2.8(m, 2 \mathrm{H}) ; 2.4-2.15(m, 2 \mathrm{H}) ; 2.1-1.0(m, 4 \mathrm{H})$. MS. (70 eV): $294(0.5), 292(3), 290(7), 288(4.5), 257$ (5), 255 (15), 253 (16), 221 (7), 219 (20), 217 (39), 207 (17), 205 (19), 191 (12), 189 (23), 187 (21), 153 (49), 151 (47), $141(71), 139(89), 127(69), 125(83), 117(100), 115(80), 113(72), 111(71), 105(89), 91(95)$.

$$
\mathrm{C}_{10} \mathrm{H}_{12} \mathrm{Cl}_{4} \mathrm{O}(290.02) \quad \text { Calc. } \mathrm{C} 41.41 \quad \mathrm{H} 4.17 \% \quad \text { Found } \mathrm{C} 41.45 \quad \mathrm{H} 4.31 \%
$$

Synthesis of 5exo, 6endo-bis(dichloromethyl)-2exo- and -2endo-bicyclo[2,2.2]octanol (22). Freshly distilled $\mathrm{BF}_{3} \cdot \mathrm{Et}_{2} \mathrm{O}(5 \mathrm{~g}, 35 \mathrm{mmol})$ was added dropwise under N_{2} at 0° to a stirred suspension of $\mathbf{2 0}(5 \mathrm{~g}$,
$18 \mathrm{mmol})$ and $\mathrm{NaBH}_{4}(1.2 \mathrm{~g}, 32 \mathrm{mmol})$ in anh. THF (50 ml). The mixture was stirred at RT. for 15 h . After cooling to 0°, water (10 ml) was added dropwise, then $3 \mathrm{~N} \mathrm{KOH}(20 \mathrm{ml})$ and $30 \% \mathrm{H}_{2} \mathrm{O}_{2}$-solution (20 $\mathrm{ml})$. After stirring at RT. for 24 h , the precipitate was filtered off on silica gel (10 g) and extracted with CHCl_{3} (3 times 50 ml). The organic solution was washed with water (3 times 50 ml), dried (MgSO_{4}) and evaporated i.V. yielding 3.7 (70%) of colorless, viscous liquid. - IR. (film): 3600, 3370, 2950, 2830, 1470, $1455,1300,1280,1235,1140,1115,1100,1080,1010,935,900,890,875,855,750 .-{ }^{1} \mathrm{H}-\mathrm{NMR} .\left(\mathrm{CDCl}_{3}\right):$ 6.05-5.75 (m, 2 H); 4.05-3.8 (m, 1 H); 2.5-2.15 (m, 2 H); 2.1-1.0 (m, 9 H). - MS. (70 eV): 296 (1.1), 294 (6), 292 (11), 290 (8.8), 278 (3), 276 (9), 274 (14), 272 (11), 259 (2), 257 (5), 255 (7), 221 (15), 219 (18), 203 (14), 201 (16), 191 (30), 189 (47), 167 (10), 165 (19), 163 (18), 161 (19), 155 (38), 153 (91), 135 (34), 129 (37), 127 (61), 125 (59), 117 (58), 91 (100).

Synhesis of 5,6 -his(E)-chloromethylidene)bicyclo[2.2.2]oct-2-ene (13). Powdered KOH ($10.5 \mathrm{~g}, 0.19$ $\mathrm{mol})$ was added to a solution of $20(17 \mathrm{~g}, 0.062 \mathrm{~mol})$ in abs. EtOH (120 ml). The mixture was heated under reflux for 24 h . After cooling to RT , water (70 ml) was added and the mixture extracted with ether (5 times 50 ml). After drying $\left(\mathrm{MgSO}_{4}\right)$ and evaporation i.V., the residue was purified by filtration on silica gel (50 g , hexane $/ \mathrm{CHCl}_{3} 1: 1$) yielding $11.4 \mathrm{~g}(91 \%)$ of colorless liquid, b.p. $117 \% 12$ Torr. - UV. (isooctane): 261 (11200). UV. ($95 \% \mathrm{EtOH}$): 261 (11000). - IR. (film): 3070, 2940, 2280, 1630, 1460, 1360, $1320,1280,1105,925,780,750,690 .-{ }^{1} \mathrm{H}-\mathrm{NMR} .\left(\mathrm{CDCl}_{3}\right): 6.3(\mathrm{~m}, 2 \mathrm{H}) ; 6.15(\mathrm{~s}, 2 \mathrm{H}) ; 3.95(\mathrm{~m}, 2 \mathrm{H}) ; 1.80-$ $1.25(m, 4 \mathrm{H}) .-{ }^{13} \mathrm{C}$-NMR. $\left(\mathrm{CDCl}_{3}\right): 140.2$ (br.s, $\left.\mathrm{C}(5), \mathrm{C}(6)\right) ; 133.0(d, J=170, \mathrm{C}(2), \mathrm{C}(3)) ; 107.1(d$. $J=194, C=\mathrm{C}(5), C=\mathrm{C}(6)) ; 34.9(d, J=141, \mathrm{C}(1), \mathrm{C}(4)) ; 23.7(t, J=134, \mathrm{C}(7), \mathrm{C}(8)) .-\mathrm{MS} .(70 \mathrm{eV}): 204$ (3), $202(18), 200(27), 176(10), 174(70), 172(100), 139(30), 137(90), 129(17), 128(8), 127(10), 105(7)$, 102 (27), 101 (21).

$$
\mathrm{C}_{10} \mathrm{H}_{10} \mathrm{Cl}_{2}(201.086) \quad \text { Calc. C } 59.72 \quad \mathrm{H} 5.01 \% \quad \text { Found C } 59.69 \quad \mathrm{H} 4.94 \%
$$

Synthests of 2,3-bis((E)-chloromethylidene)-5exo,6exo- and -5endo,6endo-epoxybicyclo[2.2.2 Joctane (14 and 15). Powdered $\mathrm{KOH}(3,1 \mathrm{~g}, 56 \mathrm{mmol})$ was added to a solution of $21(5 \mathrm{~g}, 17 \mathrm{mmol})$ in abs. EtOH (50 ml). The mixture was heated under reflux for 24 h . After cooling to RT., water (20 ml) was added and the mixture was extracted with ether (3 times 50 ml) after saturation of the aq. layer with NaCl . The ethereal extract was dried $\left(\mathrm{MgSO}_{4}\right)$ and evaporated i.V. A 9:1 mixture of $\mathbf{1 4 / 1 5}$ was obtained ($3.5 \mathrm{~g}, \mathbf{9 5 \%}$) which was separated by column chromatography on silica gel (AcOEt/hexane 1:2). The first fraction contained $3.1 \mathrm{~g}(89 \%)$ of 14 , white crystals, m.p. $67-68^{\circ}$ (hexane). - UV. (isooctane): 263 (10000). UV. $(95 \% \mathrm{EtOH}): 263$ (10100). - IR. (KBr) : 3080, 3020, 2980, 2950, 2910, 2870, 1670, 1650, 1460, 1405, 1315, $\left.1280,1130,945,920,850,790,750 .-{ }^{1} \mathrm{H}-\mathrm{NMR} .\left(\mathrm{CDCl}_{3}\right)^{9}\right): 6.4(\mathrm{~s} . \mathrm{HC}=\mathrm{C}(2), \mathrm{HC}=\mathrm{C}(3)[14]) ; 3.55(\mathrm{~m}, \mathrm{H}-$ $\mathrm{C}(1), \mathrm{H}-\mathrm{C}(4)[36.3]) ; 3.25$ ($\mathrm{m}, \mathrm{H}-\mathrm{C}(5), \mathrm{H}-\mathrm{C}(6)[100]) ; 1.9$ ($\mathrm{m}, \mathrm{H}-\mathrm{C}(7)$ and $\mathrm{H}-\mathrm{C}(8) \mathrm{syn}$ to epoxy)[51]); 1.25 (m, $\mathrm{H}-\mathrm{C}(7)$ and $\mathrm{H}-\mathrm{C}(8)$ anti to epoxy)[27.3]). - ${ }^{13} \mathrm{C}-\mathrm{NMR} .\left(\mathrm{CDCl}_{3}\right): 138.7$ (br.s, $\left.\mathrm{C}(2), \mathrm{C}(3)\right) ; 110.9(d, J=194$, $C=\mathrm{C}(2), C=\mathrm{C}(3)) ; 51.7(d, J=188, \mathrm{C}(5), \mathrm{C}(6)) ; 33.3(d, J=141, \mathrm{C}(1), \mathrm{C}(4)) ; 21.9(t, J=134, \mathrm{C}(7), \mathrm{C}(8))$. - MS. (70 eV): 220 (9), 218 (37), 216 (58), 183 (4), 181 (15), 174 (3), 172 (5), 167 (5), 165 (3), 163 (7), 161 (7), 159 (9), $155(5), 154(8), 153(12), 151$ (19), 149 (8), 145 (33), 139 (97), 138 (7), 137 (8), 131 (9), 128 (17), 127 (32), 125 (37), 118 (16), 117 (87), $116(39), 115$ (100), 103 (27), $102(15), 101$ (15), $99(10), 91(30)$, 89 (24), 77 (32), 75 (20), 73 (8).

$$
\mathrm{C}_{10} \mathrm{H}_{10} \mathrm{Cl}_{2} \mathrm{O}(217.086) \quad \text { Calc. C } 55.32 \text { H } 4.64 \% \quad \text { Found } \mathrm{C} 55.28 \quad \mathrm{H} 4.77 \%
$$

The second fraction of the above chromatography contained $0.4 \mathrm{~g}(11 \%)$ of 15 , colorless crystals, m.p. $80-81^{\circ}$. - UV. (isooctane): 264 (10200). UV. ($95 \% \mathrm{EtOH}$): 264 (9800). - IR. (KBr): 3090, 3040, 2980, $2960,2920,2880,1670,1470,1420,1350,1235,1165,1140,1030,960,925,910,865,845,810,730 .-$ $\left.{ }^{1} \mathrm{H}-\mathrm{NMR},\left(\mathrm{CDCl}_{3}\right)^{9}\right): 6.3(\mathrm{~s}, \mathrm{HC}=\mathrm{C}(2), \mathrm{HC}=\mathrm{C}(3)[23]) ; 3.65(\mathrm{~m}, \mathrm{H}-\mathrm{C}(1), \mathrm{H}-\mathrm{C}(4)[48.3]) ; 3.4(\mathrm{~m}, \mathrm{H}-\mathrm{C}(5)$, $\mathrm{H}-\mathrm{C}(6)[100]) ; 1.75(\mathrm{~m}, \mathrm{H}-\mathrm{C}(7)$ and $\mathrm{H}-\mathrm{C}(8)$ syn to epoxy) $[27]) ; 1.6$ ($m, \mathrm{H}-\mathrm{C}(7)$ and $\mathrm{H}-\mathrm{C}(8)$ anti to epoxy)[26.4]). - ${ }^{13} \mathrm{C}$-NMR. $\left(\mathrm{CDCl}_{3}\right): 137.0$ (br.s, $\left.\mathrm{C}(2), \mathrm{C}(3)\right) ; 109.9(d, J=194, C=\mathrm{C}(2), \mathrm{C}=\mathrm{C}(3)) ; 50.2(d$, $J=185, \mathrm{C}(5), \mathrm{C}(6)) ; 32.3(d, J=141, \mathrm{C}(1), \mathrm{C}(4)) ; 21.4(t, J=134, \mathrm{C}(7), \mathrm{C}(8)) .-\mathrm{MS} .(70 \mathrm{eV}): 220(8), 218$ (36), $216(56), 183(6), 181(19), 151(28), 149(60), 145(27), 139(38), 137(25), 127(36), 125(45), 117(87)$, 115 (100).

$$
\mathrm{C}_{10} \mathrm{H}_{10} \mathrm{Cl}_{2} \mathrm{O}(217.086) \quad \text { Calc. } \mathrm{C} 55.32 \quad \mathrm{H} 4.64 \% \quad \text { Found } \mathrm{C} 55.51 \quad \mathrm{H} 4.62 \%
$$

Synthesis of 5,6-bis((E)-chloromethylidene)-2exo-bicyclo[2.2.2]octanol (16). Powdered KOH (3.1 g, $56 \mathrm{mmol})$ was added to a solution of $22(5 \mathrm{~g} .17 \mathrm{mmol})$ in abs. $\mathrm{EtOH}(50 \mathrm{ml})$. The mixture was heated un-
${ }^{9}$) The relative induced shifts by $\operatorname{Eu}(\mathrm{dpm})_{3}$ are given in brackets.
der reflux for 24 h . After cooling to RT., water (20 ml) was added and the mixture was extracted with ether (3 times 50 ml) after saturation of the aq. layer with NaCl . The ethereal extract was dried (MgSO_{4}) and evaporated i.V. yielding $3.5 \mathrm{~g}(95 \%)$ of a $95: 5$ mixture of $\mathbf{1 6} / \mathbf{1 7}$. After separation by column chromatography on silica gel (AcOEt/hexane $1: 2$), $3.1 \mathrm{~g}(89 \%)$ of 16 were obtained as pure, colorless crystals, m.p. $82-83^{\circ}$. - UV. (isooctane): 260 (9600). - UV. ($95 \% \mathrm{EtOH}$): 260 (9200). - IR (KBr): 3300, 3080, 2950, $\left.2860,1625,1455,1440,1270,1050,1010,930,900,820,780,730 .-{ }^{1} \mathrm{H}-\mathrm{NMR} .\left(\mathrm{CDCl}_{3}\right)^{9}\right): 6.25(s$, $\mathrm{HC}=\mathrm{C}(6)[10.8]) ; 6.15(s, \mathrm{HC}=\mathrm{C}(5)[8.4]) ; 3.95(\mathrm{~m}, \mathrm{H}-\mathrm{C}(2)[85]) ; 3.1(\mathrm{~m}, \mathrm{H}-\mathrm{C}(1), \mathrm{H}-\mathrm{C}(4)) ; 2.5(\mathrm{~s}, \mathrm{HO}[100])$; $\left.2.25-1.0\left(m, \mathrm{H}_{2} \mathrm{C}(3), \mathrm{H}_{2} \mathrm{C}(7), \mathrm{H}_{2} \mathrm{C}(8)\right)-{ }^{13} \mathrm{C}-\mathrm{NMR} .\left(\mathrm{CDCl}_{3}\right)^{10}\right): 141.1$ (br.s, $\left.\mathrm{C}(5)[17.9]\right) ; 139.6$ (br.s, $\mathrm{C}(6)[21.1]) ; 110.5(d, J=194, C=\mathrm{C}(6)[9.8]) ; 108.9(d, J=194, C=\mathrm{C}(5)[8.7]) ; 67.0(d, J=152, \mathrm{C}(2)[100])$; $37.5(d, J=137, \mathrm{C}(1)[44]) ; 35.1(t, J=136, \mathrm{C}(3)[44.1]) ; 30.4(d, J=138, \mathrm{C}(4)[24]) ; 24.1(t, J=134$, $\mathrm{C}(7)[24.7]) ; 16.8(t, J=134, \mathrm{C}(8)[31.5])$. MS. (70 eV) : $222(5), 220(32), 218(46), 187(1), 185(6), 183(16)$, 178 (18), 176 (38), 174 (22), 172 (13), 167 (12), 165 (33), 159 (8), 154 (19), 152 (16), 147 (29), 141 (41), 140 (22), 139 (100), 138 (30), 129 (37), 128 (13), 127 (43), 125 (74), 119 (23), 117 (14), 115 (19), 105 (18), 104 (22), 103 (98), 102 (19), 101 (14), 100 (11), 91 (36), 89 (14), 77 (50).

$$
\mathrm{C}_{10} \mathrm{H}_{12} \mathrm{Cl}_{2} \mathrm{O}(219.10) \quad \text { Calc. } \mathrm{C} 54.81 \quad \mathrm{H} 5.52 \% \quad \text { Found C } 54.87 \quad \mathrm{H} 5.53 \%
$$

Synthesis of 5,6-bis((E)-chloromethylidene)-2-bicyclo[2.2.2]octanone (18). CrO_{3} ($12.5,0,125 \mathrm{~mol}$) was added in small portions under N_{2} to a stirred solution of anh. pyridin ($20 \mathrm{~g}, 0.25 \mathrm{~mol}$) in anh. $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ $(125 \mathrm{ml})$ maintained at 0°. After stirring at 20° for $10 \mathrm{~min}, \mathbf{1 6}(2 \mathrm{~g}, 9 \mathrm{mmol})$ in anh. $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5 \mathrm{ml})$ was added dropwise. The mixture was stirred at 20° for 3 h . The precipitate was filtered off on silica gel (20 g) and washed with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The solvent was concentrated i.V. to 20 ml and ether (100 ml) was added. The organic solution was washed successively with $1 \mathrm{~N} \mathrm{HCl}(50 \mathrm{ml})$, aq. NaHCO_{3}-solution and water. After drying $\left(\mathrm{MgSO}_{4}\right)$, the solvent was evaporated $\mathrm{i} . \mathrm{V}$. The crude 18 was purified on a column of silica gel (30 g , AcOEt/Hexane $1: 2$) yielding $1.2(60 \%)$ of white crystals, m.p. $76-77^{\circ}$ (hexane). - UV. (isooctane): 265 (8400), 304 (300). - UV. ($95 \% \mathrm{EtOH}$): 265 (8500), 298 (280). - IR. (KBr): 3080, 2950, 2910, 2880, $1725,1620,1210,1090,900,770 .-{ }^{1} \mathrm{H}-\mathrm{NMR} .\left(\mathrm{CDCl}_{3}{ }^{9}\right): 6.35(s, \mathrm{HC}=\mathrm{C}(5)[17.5]) ; 6.3(s, \mathrm{HC}=\mathrm{C}(6)[20])$; 3.75 ($\mathrm{m}, \mathrm{H}-\mathrm{C}(4)[29]) ; 3.5(\mathrm{~m}, \mathrm{H}-\mathrm{C}(1)[100]) ; 2.35\left(d, \mathrm{H}_{2} \mathrm{C}(3)[96]\right) ; 1.9\left(m, \mathrm{H}_{2} \mathrm{C}(7), \mathrm{H}_{2} \mathrm{C}(8)\right) .-{ }^{13} \mathrm{C}-\mathrm{NMR}$. $\left.\mathrm{CDCl}_{3}\right)^{10}$): 208.8 (br.s, $\mathrm{C}(2)[100]$); 139.1 (br.s, $\mathrm{C}(5)[15.4]$); 134.6 (br.s, $\mathrm{C}(6)[19]$); 112.7 ($d, J=194$, $C=\mathrm{C}(6)[10.8]) ; 110.4(d, J=194, C=\mathrm{C}(5)[9.2]) ; 47.9(d, J=145, \mathrm{C}(1)[45]) ; 42.8(t, J=134, \mathrm{C}(3)[45.1]) ; 31.9$ $(d, J=139, \mathrm{C}(4)[20.9]) ; 23.4(t, J=134, \mathrm{C}(7)[15.6]) ; 22.4(t, J=134, \mathrm{C}(8)[18.1]) .-\mathrm{MS} .(70 \mathrm{eV}): 220(5), 218$ (26), $216(40), 185(0.5), 183(3.5), 181(9.5), 176(16), 174(67), 172(100), 163(1.5), 161(4.4), 159(6), 141$ (17), 139 (51), $137(15), 127(10), 125(27), 117(18), 115(16), 104(11), 103(49), 102(9), 91(15), 89(9), 77$ (24).

$$
\mathrm{C}_{10} \mathrm{H}_{10} \mathrm{Cl}_{2} \mathrm{O}(217.085) \quad \text { Calc. C } 55.32 \quad \mathrm{H} 4.64 \% \quad \text { Found } \mathrm{C} 55.38 \quad \mathrm{H} 4.88 \%
$$

Synthesis of 5,6-bis((E)-chloromethylidene)-2endo-bicyclo[2.2.2]octanol (17). The ketone 18 ($1 \mathrm{~g}, 4.6$ $\mathrm{mmol})$ was added to a stirred suspension of $\mathrm{LiAlH}_{4}(0.35 \mathrm{~g}, 9.2 \mathrm{mmol})$ in anh. THF (20 ml). After stirring at 20° for 1 h , water (1 ml) was added and the precipatate was filtered off. The solvent was evaporated $\mathrm{i} . \mathrm{V}$. to dryness and the residue was triturated with pentane (50 ml). The extract was dried (MgSO_{4}) and evaporated i.V.: $0.95 \mathrm{~g}(95 \%)$ of $\mathbf{1 6} / \mathbf{1 7}(1: 1)$ which were separated by column chromatography on silica gel ($\mathrm{AcOEt} /$ hexane $1: 2$). The first fraction contained 0.45 g of $\mathbf{1 6}$, the second 0.4 g of $\mathbf{1 7}$. The latter was obtained pure after recrystallization from pentane: $0.39 \mathrm{~g}(39 \%)$, white crystals, m.p. $77-78^{\circ}$. - UV. (isooctane): 260 (9300). UV. ($95 \% \mathrm{EtOH}$): 260 (9800). - IR. (KBr): 3560, 3380, 3080, 2950, 2880, 1630, 1465, 1450, 1265, 1075, 1050, 965, 910, 810, 785, 730. - ${ }^{1} \mathrm{H}-\mathrm{NMR} .\left(\mathrm{CDCl}_{3}\right): 6.4($ br. $s, \mathrm{HC}=\mathrm{C}(6)) ; 6.2(\mathrm{br} . s$, $\mathrm{HC}=\mathrm{C}(5)) ; 4.05(m, \mathrm{H}-\mathrm{C}(2)) ; 3.15(m, \mathrm{H}-\mathrm{C}(1), \mathrm{H}-\mathrm{C}(4)) ; 2.2\left(m, \mathrm{H}_{\text {exo }}-\mathrm{C}(3)\right) ; 1.8$ (br.s, HO); $1.5(\mathrm{~m}$, $\left.\mathrm{H}_{2} \mathrm{C}(7), \mathrm{H}_{2} \mathrm{C}(8)\right) ; 1.2\left(\mathrm{~m}, \mathrm{H}_{\text {endo }}-\mathrm{C}(3)\right) .-{ }^{13} \mathrm{C}-\mathrm{NMR} .\left(\mathrm{CDCl}_{3}\right)$; 141.1 (br.s, $\mathrm{C}(5)$); 137.6 (br.s, $\mathrm{C}(6)$); 112.4 $(d, J=194, C=\mathrm{C}(6)) ; 108.7(d, J=194, C=\mathrm{C}(5)) ; 68.7(d, J=148, \mathrm{C}(2)) ; 37.8(d, J=140, \mathrm{C}(1)) ; 36.8(t$, $J=135, \mathrm{C}(3)) ; 29.7(d, J=137, \mathrm{C}(4)) ; 23.1(t, J=131, \mathrm{C}(7)) ; 21.4(t, J=131, \mathrm{C}(8)) . \mathrm{MS} .(70 \mathrm{eV}): 222(7)$, 220 (33), 218 (48), 185 (6), 183 (16), 167 (10), 165 (38), 154 (17), 152 (18), 147 (33), 141 (40), 140 (23), 139 (100), 138 (27), 129 (38), 127 (42), 125 (80), 119 (25), 117 (16), 115 (20), 105 (19), 104 (24), 103 (99), 102 (21), 101 (16), 91 (58), 77 (41).

$$
\mathrm{C}_{10} \mathrm{H}_{12} \mathrm{Cl}_{2} \mathrm{O}(219.10) \quad \text { Calc. C } 54.81 \quad \mathrm{H} 5.52 \% \quad \text { Found C } 55.00 \quad \mathrm{H} 5.58 \%
$$

Diels-Alder adducts of TCE to 13-18, synthesis of endo-23-endo-26, exo-27 and exo-28. Each diene 13-18 ($1-5 \mathrm{mmol}$) and TCE (1 mol -equiv., $1-5 \mathrm{mmol}$) in anh. benzene ($3-15 \mathrm{ml}$) were stirred at 20° for

[^3]24 h . After evaporation of the solvent, the crude adduct ($>95 \%$) was crystallized from $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ /pentane $9: 1$ until the major isomer was obtained in pure form.

3endo, 6 endo-Dichlorotricyclo[6.2.2.0 $\left.0^{2.7}\right]$ dodeca-2(7),9-diene-4,4,5,5-tetracarbonitrile (endo-23). Yield 55%, colorless crystals, m.p. 182-183 . - UV. ($95 \% \mathrm{ELOH}$): 216 (6500). - IR. (KBr): 3080, 3000, 2960, 2940, 2900, 2880, 2260, 1660, 1610, 1470, 810, 765. - ${ }^{1} \mathrm{H}-\mathrm{NMR} .\left(\mathrm{CD}_{3} \mathrm{COCD}_{3}\right): 6.55(\mathrm{~m}, 2 \mathrm{H}) ; 6.3(\mathrm{~s}, 2 \mathrm{H})$; 4.15 ($m, 2 \mathrm{H}$) ; 1.6 ($\mathrm{m}, 4 \mathrm{H}$). - MS. (70 eV): 330 (0.6), 329 (0.2), 328 (1), 302 (4), 301 (I), 300 (7), 293 (3), 267 (3), 266 (2), 265 (10), 240 (1), 238 (2.5), 231 (1), 230 (5), 229 (3), 205 (2), 204 (7), 203 (8), 202 (6), 201 (2), $200(4), 190(2), 176(17), 174(61), 172(100), 167(3), 166(8), 165(12), 152(3), 151(4), 150(5), 140$ (7), 139 (6), 137 (11), 115 (2), 113 (1), 102 (4), 101 (5), 100 (6).

$$
\mathrm{C}_{16} \mathrm{H}_{10} \mathrm{Cl}_{2} \mathrm{~N}_{4}(329.189) \quad \text { Calc. } \mathrm{C} 58.37 \quad \mathrm{H} 3.06 \% \quad \text { Found } \mathrm{C} 58.07 \quad \mathrm{H} 3.24 \%
$$

3exo,6exo-Dichlorotricyclo[6.2.2.0 $\left.{ }^{2,7}\right]$ dodeca-2(7),9-diene-4,4,5,5-tetracarbonitrile (exo-23). - ${ }^{1} \mathrm{H}$ NMR. $\left(\mathrm{CD}_{3} \mathrm{COCD}_{3}\right): 6.55(\mathrm{~m}, 2 \mathrm{H}) ; 6.15(\mathrm{~s}, 2 \mathrm{H}) ; 4.05(\mathrm{~m}, 2 \mathrm{H}) ; 1.6(\mathrm{~m}, 4 \mathrm{H})$.

3endo, 6endo-Dichloro-9exo-10exo-epoxytricyclo[6.2.2.O2,7]dodec-2(7)-ene-4,4,5,5-tetracarbonitrile (endo-24). Yield 60%, colorless crystals, m.p. $146-147^{\circ}$ (dec.). - IR. (KBr.): 3050, 3000, 2960, 2940, 2920, $2880,2260,1470,1415,1290,1265,1240,1165,1090,1010,855,800 .-{ }^{1} \mathrm{H}-\mathrm{NMR}$. (CD COCD_{3}): $6.3(s, 2$ H); 3.6 ($\mathrm{m}, 4 \mathrm{H}$) ; 2.15-2.0 (m, 2 H); $1.25(\mathrm{~m}, 2 \mathrm{H})$. $-\mathrm{MS} .(70 \mathrm{eV}): 311$ (10), $310(6), 309$ (29), 291 (8), 281 (17), 279 (13), 273 (26), 267 (8), 266 (7), 265 (15), 256 (18), 255 (35), 254 (12), 253 (10), 252 (14), 246 (28), 245 (61), 244 (19), 243 (14), 231 (35), 229 (16), 228 (22), 227 (21), 221 (27), 220 (20), 219 (28), 218 (85), 217 (46), 216 (35), 213 (21), 204 (42), 203 (40), 202 (22), 197 (55), 193 (72), 192 (66), 191 (100), 190 (32), 189 (30), $181(41), 180(37), 179(81), 178$ (33), 177 (30), 176 (24), 169 (45), 168 (33), 167 (37), 165 (66), 140 (55), 117 (49), 115 (70).

$$
\mathrm{C}_{16} \mathrm{H}_{10} \mathrm{Cl}_{2} \mathrm{~N}_{4} \mathrm{O}(345.18) \quad \text { Calc. C } 55.66 \quad \mathrm{H} 2.92 \% \quad \text { Found } \mathrm{C} 55.58 \quad \mathrm{H} 3.04 \%
$$

3exo,6exo-Dichloro-9exo-10exo-epoxytricyclo[6.2.2.0 ${ }^{2,7}$]dodec-2(7)-ene-4,4,5,5-tetracarbonitrile (exo24). - ${ }^{1} \mathrm{H}$-NMR. $\left(\mathrm{CD}_{3} \mathrm{COCD}_{3}\right): 6.35(\mathrm{~s}, 2 \mathrm{H}) ; 3.5-3.6(\mathrm{~m}, 4 \mathrm{H}) ; 2.15-2.0(\mathrm{~m}, 2 \mathrm{H}) ; 1.25(\mathrm{~m}, 2 \mathrm{H})$.

3endo,6endo-Dichloro-9endo,10endo-epoxytricyclo[6.2.2.0 ${ }^{2,7}$]dodec-2(7)-ene-4,4,5,5-tetracarbonitrile (endo-25). Yield 40\%, colorless crystals, in.p. 141-142 ${ }^{\circ}$ (dec). - IR. (KBr): 3040, 3000, 2960, 2940, $2920,2880,2260,1640,1465,1410,1360,1290,1260,1240,1160,1140,1085,1055,1005,940,930,850$, 815, 800, 785, 760, 710. - ${ }^{1} \mathrm{H}-\mathrm{NMR} .\left(\mathrm{CD}_{3} \mathrm{COCD}_{3}\right): 6.0(\mathrm{~s}, 2 \mathrm{H}) ; 3.4(\mathrm{~m}, 4 \mathrm{H}) ; 1.8(\mathrm{~m}, 2 \mathrm{H}) ; 1.45(\mathrm{~m}, 2 \mathrm{H}) .-$ MS. (70 eV): 311 (9), 309 (20), 273 (25), 255 (42), 245 (61), 231 (47), 218 (85), 217 (49), 204 (45), 203 (50), $197(60), 193$ (80), 192 (65), 191 (100), 190 (44), 181 (52), $180(53), 179(91), 178(49), 177(34), 165(75)$, 153 (55), $140(76), 127(60), 125(65), 117(91), 115(97), 103(53), 102(47), 101(45), 100(55), 91(64)$.

$$
\mathrm{C}_{16} \mathrm{H}_{10} \mathrm{Cl}_{2} \mathrm{~N}_{4} \mathrm{O}(345.18) \quad \text { Calc. } \mathrm{C} 55.66 \quad \mathrm{H} 2.92 \% \quad \text { Found } \mathrm{C} 55.64 \quad \mathrm{H} 2.82 \%
$$

3exo,6exo-Dichloro-9endo,10endo-epoxvtricyclo[6.2.2.0 $\left.{ }^{2,7}\right]$ dodec-2(7)-ene-4,4,5,5-tetracarbonitrile (exo-25). - ${ }^{1} \mathrm{H}-\mathrm{NMR} .\left(\mathrm{CD}_{3} \mathrm{COCD}_{3}\right): 5.95(\mathrm{~s}, 2 \mathrm{H}) ; 3.4(\mathrm{~m}, 4 \mathrm{H}) ; 1.8(\mathrm{~m}, 2 \mathrm{H}) ; 1.45(\mathrm{~m}, 2 \mathrm{H})$.

3endo,6endo-Dichloro-9exo-hydroxytricyclo[6.2.2.0 $\left.0^{2,7}\right]$ dodec-2(7)-ene-4,4,5,5-tetracarbonitrile (endo26). Yield 39%, colorless crystals, m.p. $175-176^{\circ}$ (dec.). -1 R . (KBr): $3570,3390,2940,2880,2260,1465$, $1445,1310,1280,1250,1230,1170,1145,1045,1000,955,935,790,755,710 .-{ }^{1} \mathrm{H}-\mathrm{NMR} .\left(\mathrm{CD}_{3} \mathrm{COCD}_{3}\right)$: 6.115 and $6.10(2 d, J=1.5$ each, H-C(3), H-C(6)) ; 4.3 (br.s, 1 H$) ; 3.95(\mathrm{~m}, 1 \mathrm{H}) ; 3.03(\mathrm{~m}, 1 \mathrm{H}) ; 2.95(\mathrm{~m}, \mathrm{l}$ $\mathrm{H}) ; 2.3$ ($\mathrm{m}, 1 \mathrm{H}$) ; 1.9 ($\mathrm{m}, 2 \mathrm{H}$); $1.4(\mathrm{~m}, 2 \mathrm{H}) ; 1.25(\mathrm{~m}, 1 \mathrm{H})$ - MS. (70 eV$): 304$ (13), 302 (15), 231 (37), 206 (15), 205 (14), 204 (21), 179 (40), 178 (46), 176 (48), 174 (100), 165 (24), 149 (31), 139 (38), 128 (55), 111 (47), 109 (39), 97 (72), 95 (79), 91 (28).

$$
\mathrm{C}_{16} \mathrm{H}_{12} \mathrm{Cl}_{2} \mathrm{~N}_{4} \mathrm{O}(347.2) \quad \text { Calc. C } 55.35 \quad \mathrm{H} 3.48 \% \quad \text { Found } \mathrm{C} 55.21 \quad \text { H } 3.53 \%
$$

3exo,6exo-Dichloro-9exo-hydroxytricyclo/6.2.2.0 $0^{2,7}$ ldodec-2(7)-ene-4,4,5,5-tetracarbonitrile (exo-26). ${ }^{-1} \mathrm{H}-\mathrm{NMR} .\left(\mathrm{CD}_{3} \mathrm{COCD}_{3}\right): 5.915$ and $5.90(2 \mathrm{~d}, \mathrm{~J}=1.5$ each, $\mathrm{H}-\mathrm{C}(3), \mathrm{H}-\mathrm{C}(6)) ; 4.3$ (br.s, 1 H); $3.95(\mathrm{~m}, 1$ $\mathrm{H}) ; 3.03(\mathrm{~m}, 1 \mathrm{H}) ; 2.95(\mathrm{~m}, 1 \mathrm{H}) ; 2.3(\mathrm{~m}, 1 \mathrm{H}) ; 1.9(\mathrm{~m}, 2 \mathrm{H}) ; 1.4(\mathrm{~m}, 2 \mathrm{H}) ; 1.25(\mathrm{~m}, 1 \mathrm{H})$.

3exo,6 ехо-Dichloro-9endo-hydroxytricyclo[6.2.2.0 $\left.{ }^{2,7}\right]$ dodec-2(7)-ene-4,4.5.5-tetracarbonitrile (exo27). Yield 90%, colorless crystals, m.p. $197-198^{\circ}$ (dec.). - IR. (KBr): 3580, 3390, 2990, 2960, 2930, 2880, $2260,1470,1450,1440,1350,1285,1245,1190,1170,1150,1070,1035,970,900,870,790,760 .-{ }^{1} \mathrm{H}-$ NMR. ($\mathrm{CD}_{3} \mathrm{COCD}_{3}$) : 6.12 and $5.75(2 d, J=1.5$ each, $\mathrm{H}-\mathrm{C}(3), \mathrm{H}-\mathrm{C}(6)) ; 4,2(\mathrm{~m}, 1 \mathrm{H}) ; 4.05$ (br.s, 1 H$) ; 3.05$ ($m, 1 \mathrm{H}$) ; $2.95(m, 1 \mathrm{H}) ; 2.2(m, 1 \mathrm{H}) ; 1.75-1.55(m, 2 \mathrm{H}) ; 1.5-1.4(m, 2 \mathrm{H}) ; 1.3(m, 1 \mathrm{H}) .-\mathrm{MS} .(70 \mathrm{eV}):$

304 (7), 302 (12), 269 (4), 268 (6), 267 (10), 231 (31), 213 (8), 204 (19), 179 (37), 178 (43), 176 (61), 174 (100), 165 (19), 139 (40), 128 (15), 127 (17), 125 (23), 97 (58), 95 (30), 91 (25).

$$
\mathrm{C}_{16} \mathrm{H}_{12} \mathrm{Cl}_{2} \mathrm{~N}_{4} \mathrm{O}(347.2) \quad \text { Calc. C } 55.35 \quad \mathrm{H} 3.48 \% \quad \text { Found } \mathrm{C} 55.41 \quad \mathrm{H} 3.58 \%
$$

3endo,6endo-Dichloro-9endo-hydroxytricyclof6.2.2.0 ${ }^{2,7}$]dodec-2(7)-ene-4,4,5,5-tetracarbonitrile (en-do-27). - ${ }^{1} \mathrm{H}-\mathrm{NMR} .\left(\mathrm{CD}_{3} \mathrm{COCD}_{3}\right): 6.08$ and $5.98(2 \mathrm{~d}, \mathrm{~J}=1.5$ each, $\mathrm{H}-\mathrm{C}(3), \mathrm{H}-\mathrm{C}(6)) ; 4.2(\mathrm{~m}, 1 \mathrm{H}) ; 4.05$ (br.s, 1 H) ; $3.05(\mathrm{~m}, 1 \mathrm{H}) ; 2.95(\mathrm{~m}, 1 \mathrm{H}) ; 2.2(\mathrm{~m}, 1 \mathrm{H}) ; 1.75-1.55(\mathrm{~m}, 2 \mathrm{H}) ; 1.5-1.4(\mathrm{~m}, 2 \mathrm{H}) ; 1.3(\mathrm{~m}, 1 \mathrm{H})$.

3exo,6exo-Dichloro-9-oxotricyclo[6.2.2.0 $\left.0^{2,7}\right]$ dodec-2(7)-ene-4,4,5,5-tetracarbonitrile (exo-28). Yield 40%, colorless crystals, m.p. 224-225 . - UV. ($95 \% \mathrm{EtOH}$): 300 (400), 215 (6000). - IR. (KBr): 2950, 2920, $2880,2250,1725,1400,1300,1150,1090,975,915,790,755,705,665 .-{ }^{1} \mathrm{H}-\mathrm{NMR} .\left(\mathrm{CD}_{3} \mathrm{COCD}_{3}\right): 6.24$ and $6.22(2 d, J=1.5$ each, $\mathrm{H}-\mathrm{C}(3), \mathrm{H}-\mathrm{C}(6)) ; 3.47(m, 2 \mathrm{H}) ; 2.3-2.25(m, 2 \mathrm{H}) ; 2.2-2.0(m, 2 \mathrm{H}) ; 1.9-1.65$ ($m, 2 \mathrm{H}$) - MS. (70 eV): 344 (4), 310 (8), 309 (9), 308 (18), 304 (10), 302 (14), 281 (5), 267 (18), 265 (15), 253 (12), 240 (16), 232 (20), 231 (46), 204 (27), 199 (23), 191 (25), 179 (35), 178 (36), 176 (69), 174 (100), 165 (36), 155 (49), 154 (37), 153 (30), 152 (34), 141 (62), 139 (59), 129 (45), 128 (48), 127 (36), 125 (34), 115 (55), 103 (41), 101 (48), 91 (61).

$$
\mathrm{C}_{10} \mathrm{H}_{10} \mathrm{Cl}_{2} \mathrm{~N}_{4} \mathrm{O}(345.19) \quad \text { Calc. } \mathrm{C} 55.67 \quad \mathrm{H} 2.92 \% \quad \text { Found } \mathrm{C} 55.60 \quad \mathrm{H} 2.84 \%
$$

3endo-6endo-Dichloro-9-oxotricyclo[6.2.2. $\left.0^{2,7}\right]$ dodec-2(7)-ene-4,4,5,5-tetracarbonitrile (endo-28). ${ }^{1} \mathrm{H}-\mathrm{NMR} .\left(\mathrm{CD}_{3} \mathrm{COCD}_{3}\right): 6.3$ and $6.18(2 d, J=1.5$ each, $\mathrm{H}-\mathrm{C}(3), \mathrm{H}-\mathrm{C}(6)) ; 3.55(m, 2 \mathrm{H}) ; 3.4(m, 2 \mathrm{H}) ; 2.4$ ($m, 2 \mathrm{H}$) ; 2.2-2.0 ($\mathrm{m}, 2 \mathrm{H}$) ; 1.9-1.65 ($\mathrm{m}, 2 \mathrm{H}$).

REFERENCES

[1] M. Avenati, P.-A. Carrupt, D. Quarroz \& P. Vogel, Helv. Chim. Acta 65, 188 (1982).
[2] M. Avenati, J.-P. Hagenbuch, C. Mahaim \& P.Vogel, Tetrahedron Lett. 1980, 3167.
[3] H. C. Brown, W. J. Hammar, J. H. Kawakami, I. Rothberg \& D. L. Van der Jagt, J. Am. Chem. Soc. 89, 6381 (1967); H. C. Brown, in The Nonclassical Ion Problem, Plenum Press, New York 1977.
[4] P. v. R. Schleyer, J. Am. Chem. Soc. 89, 699, 701 (1967).
[5] S. Inagaki \& K. Fukui, Chem. Lett. 1974, 509; S. Inagaki, H. Fujimoto \& K. Fukui, J. Am. Chem. Soc. 98, 4054 (1976); G. Wipff \& K. Morokuma, Tetrahedron Lett. 1980, 4445; N. G. Rondan. M. N. Paddon-Row, P. Caramella \& K. N. Hauk, J. Am. Chem. Soc. I03, 2436 (1981) and ref. cit. therein; R. Huisgen, P. H. J. Ooms, M. Mingin \& N. L. Allinger, ibid. 102, 3951 (1980); R. Huisgen, Pure Appl. Chem. 53, 171 (1981).
[6] W. H. Watson, J. Galloy, P. D. Bartlett \& A. A. M. Roof, J. Am. Chem. Soc. 103, 2022 (1981).
[7] J.-P. Hagenbuch, P. Vogel, A. A. Pinkerton \& D. Schwarzenbach, Helv. Chim. Acta 64, 1818 (1981).
[8] A. A. Pinkerton, D. Schwarzenbach, J. H. A. Stibbard, P. A. Carrupt \& P.Vogel, J. Am. Chem. Soc. 103, 2095 (1981).
[9] K. Alder, F. H. Flock \& P. Janssen, Chem. Ber. 89, 2689 (1956).
[10] T. Sugimoto, Y. Kobuke \& J. Furukawa, J. Org. Chem. 4I, 1457 (1976).
[11] L. A. Paquette, R. V. C. Carr, M. C. Böhm \& R. Gleiter, J. Am. Chem. Soc. 102, 1186 (1980); M. C. Böhm, R. V. C. Cart, R. Gleiter \& L. A. Paquette, ibid. 102, 7218 (1980); L. A. Paquette, F. Bellamy, M. C. Böhm \& R. Gleiter, J. Org. Chem. 45, 4913 (1980).
[12] L. A. Paquette, R. V. C. Carr, E. Arnold \& J. Clardy, J. Org. Chem. 45, 4907 (1980).
[13] M.J.S. Dewar \& R. C. Dougherty, The PMO Theory of Organic Chemistry, Plenum Press, New York 1975, p. 212.
[14] C. Mahaim, dissertation, Ecole Polytechnique Fédérale de Lausanne, 1982.
[15] L. A. Paquette, R. V. C. Carr, P. Charumilind \& J. F. Blount, J. Org. Chem. 45, 4922 (1980).
[16] W. J. Feast, W. K. R. Musgrave \& W. E. Preston, J. Chem. Soc., Perkin I 1972, 1830.
[17] W.J. Feast, R. R. Hughes \& W. K. R. Musgrave, J. Chem. Soc., Perkin I I977, 152.
[18] P. Ashkenazi, M. Kaftory, D. Arad, Y. Apeloig, D. Ginsburg, Helv. Chim. Acta 64, 579 (1981); M. Kaftory, M. Peled \& D. Ginsburg, ibid. 62, 1326 (1979); M. Korat, D. Tatarsky \& D. Ginsburg, Tetrahedron 28, 2315 (1972); D. Ginsburg, Acc. Chem. Res. 7, 286 (1974); J. Kalo, D. Ginsburg \& E. Vogel, Tetrahedron 33, 1177 (1977); P. Ashkenazi, D. Ginsburg \& E. Vogel, ibid. 33, 1169 (1977); P. Ashkenazi, R. Gteiter, W. v. Philipsborn, P. Bigler \& D. Ginsburg, ibid. 37, 127 (1981); M. Peled \& D. Ginsburg, ibid. 37, 161 (1981) and ref. cit. therein; M. C. Böhm \& R. Gleiter, ibid. 36, 3209 (1980).
[19] a) B. M. Jacobson, J. Am. Chem. Soc. 95 , 2579 (1973); b) D. W. Jones, J. Chem. Soc., Chem. Commun. 1980, 739.
[20] D. L. Hufford, D. S. Tarbell \& Th. R. Koszalka, J. Am. Chem. Soc. 74, 3014 (1954); K. Alder, H. Betzing \& K. Heimbach, Justus Liebigs Ann. Chem. 638, 187 (1960); F. Sung \& J. J. Riehl, Tetrahedron Lett. 1972, 509.
[21] M. S. Newman \& L. L. Wood, jr., J. Am. Chem. Soc. 81, 4300 (1959); M. S. Newman, G. Fraenkel \& W. H. Kirn, ibid. 85, 1851 (1963).
[22] A. W. Douglas, Org. Magn. Reson. 9, 69 (1977); U.Vögeli \& W. von Philipsborn, ibid.7, 617 (1975); P. E. Hansen, Progr. NMR. Spectr. 14, 175 (1981).
[23] J. H. Noggle \& R. E. Schirmer, in The Nuclear Overhauser Effect: Chemical Applications, Academic Press, New York 1971.
[24] A. I. Scott, Interpretation of the Ultra-violet Spectra of Natural Products, Pergamon Press 1964, pp. 50.
[25] M. Barfield \& S. Sternhell, J. Am. Chem. Soc. 94, 1905 (1972); S. Sternhell, Quart. Rev. 1964, 236.
[26] Y. Bessière \& P. Vogel, Helv. Chim. Acta 63, 232 (1980).

[^0]: ${ }^{1}$) Interaction between non-conjugated chromophores, Part 15; Part 14, see [1].
 ${ }^{2}$) For a preliminary report, see [2].
 ${ }^{3}$) Author to whom correspondence should be addressed.
 ${ }^{4}$) According to the IUPAC nomenclature 'bicyclo[2.2.1]heptane' is now called ' $8,9,10$-trinorbornane'; for commodity reasons we use in this paper the abolished name 'norbornane'.

[^1]: $\left.{ }^{5}\right)$ The terms syn and anti refer to the relative positions of the methanes ($\mathrm{C}(12)$) and the oxa- $(\mathrm{O}(11))$ bridge to each other.

[^2]: ${ }^{6}$) For the face-selectivity of Diels-Alder additions of endocyclic dienes, cf. footnote ${ }^{7}$) being part of propellanes, see [18]. See also the cycloadditions of bicyclo [4.4.0]deca-2,4-dienes [19a] and 5-hydroxycyclopentadienes [19b].
 ${ }^{7}$) An exocyclic butadiene moiety means that each double bond is in an exocyclic position on the ring skeleton.
 ${ }^{8}$) For the purpose of an easier discussion, compounds 13-18 are numbered in the same way in the General Part. Systematic nomenclature is used in the Exper. Part.

[^3]: ${ }^{10}$) The relative induced shifts by $\mathrm{Yb}(\mathrm{dpm})_{3}$ are given in brackets.

